Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(13): 2076-2090.e9, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196658

RESUMO

Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.


Assuntos
Hipocampo , Células Piramidais , Ratos , Animais , Hipocampo/fisiologia
2.
Mol Psychiatry ; 28(3): 1027-1045, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-33990773

RESUMO

Dopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


Assuntos
Depressão , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Fosforilação , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
3.
J Neurosci ; 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35853717

RESUMO

Olfactory information is relayed and processed in the olfactory bulb (OB). Mitral cells (MCs), the principal output excitatory neurons of the OB, are controlled by multiple types of interneurons. However, mechanisms that regulate the activity of OB interneurons are not well understood. We provide evidence that the transmembrane tyrosine kinase ErbB4 is selectively expressed in subsets of OB inhibitory neurons in both male and female mice. ErbB4-positive (ErbB4+) neurons are mainly located in the glomerular layer (GL) and granule cell layer (GCL) and do not express previously defined markers. Optogenetic activation of GL-ErbB4+ neurons promotes theta oscillation, whereas activation of those in the GCL generates gamma oscillations. Stimulation of OB slices with NRG1, a ligand that activates ErbB4, increases GABA transmission onto MCs, suggesting a role of OB NRG1-ErbB4 signaling in olfaction. In accord, ErbB4 mutant mice or acute inhibition of ErbB4 by a chemical genetic approach diminishes GABA transmission, reduces bulbar local field potential (LFP) power, increases the threshold of olfactory sensitivity, and impairs odor discrimination. Together these results identified a bulbar inhibitory network of ErbB4+ neurons for olfaction. Considering both NRG1 and ErbB4 are susceptibility genes for neuropsychiatric disorders, our study provides insight into pathological mechanisms of olfactory malfunctions in these disorders.Significance Statement:This study demonstrates ErbB4+ neurons are a new subset of OB inhibitory neurons in the GL and GCL that innervate MCs and ErbB4- cells. They regulate olfaction by controlling local synchrony and distinct oscillations. ErbB4 inhibition diminishes GABA transmission, reduces bulbar local field potential (LFP) power, increases the threshold of olfactory sensitivity, and impairs odor discrimination. Our results provide insight into pathophysiological mechanism of olfaction deficits in brain disorders associated with NRG1 or ErbB4 mutations.

4.
Neuron ; 110(14): 2315-2333.e6, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35561677

RESUMO

Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.


Assuntos
Temperatura Alta , Neuregulina-1 , Neurônios , Sensação Térmica , Animais , Camundongos , Neuregulina-1/farmacologia , Neurônios/fisiologia , Receptor ErbB-4/genética
5.
Cell Rep ; 39(3): 110711, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443166

RESUMO

Neurons must function for decades of life, but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we report an adult-stage transcriptional program specialized to ensure the preservation of neuronal connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of 5-HT connectivity comprising functionally diverse synaptic and axonal genes. Adult-stage deficiency of Lmx1b and Pet1 causes slowly progressing degeneration of 5-HT synapses and axons, increased susceptibility of 5-HT axons to neurotoxic injury, and abnormal stress responses. Axon degeneration occurs in a die back pattern and is accompanied by accumulation of α-synuclein and amyloid precursor protein in spheroids and mitochondrial fragmentation without cell body loss. Our findings suggest that neuronal connectivity is transcriptionally protected by maintenance of connectivity transcriptomes; progressive decay of such transcriptomes may contribute to age-related diseases of brain circuitry.


Assuntos
Serotonina , Fatores de Transcrição , Animais , Axônios/metabolismo , Camundongos , Neurônios/metabolismo , Serotonina/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
6.
J Neurosci ; 42(3): 390-404, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34844988

RESUMO

Sharp wave ripples (SW-Rs) in the hippocampus are synchronized bursts of hippocampal pyramidal neurons (PyNs), critical for spatial working memory. However, the molecular underpinnings of SW-Rs remain poorly understood. We show that SW-Rs in hippocampal slices from both male and female mice were suppressed by neuregulin 1 (NRG1), an epidermal growth factor whose expression is enhanced by neuronal activity. Pharmacological inhibition of ErbB4, a receptor tyrosine kinase for NRG1, increases SW-R occurrence rate in hippocampal slices. These results suggest an important role of NRG1-ErbB4 signaling in regulating SW-Rs. To further test this notion, we characterized SW-Rs in freely moving male mice, chemical genetic mutant mice, where ErbB4 can be specifically inhibited by the bulky inhibitor 1NMPP1. Remarkably, SW-R occurrence was increased by 1NMPP1. We found that 1NMPP1 increased the firing rate of PyN neurons, yet disrupted PyN neuron dynamics during SW-R events. Furthermore, 1NMPP1 increased SW-R occurrence during both nonrapid eye movement (NREM) sleep states and wake states with a greater impact on SW-Rs during wake states. In accord, spatial working memory was attenuated in male mice. Together these results indicate that dynamic activity of ErbB4 kinase is critical to SW-Rs and spatial working memory. This study reveals a novel regulatory mechanism of SW-Rs and a novel function of the NRG1-ErbB4 signaling.SIGNIFICANCE STATEMENT Sharp wave ripples (SW-Rs) are a hippocampal event, important for memory functioning. Yet the molecular pathways that regulate SW-Rs remain unclear. Neuregulin 1 (NRG1), previously known to be increased in pyramidal neuron's (PyNs) in an activity dependent manner, signals to its receptor, ErbB4 kinase, that is in important regulator of GABAergic transmission and long-term potentiation in the hippocampus. Our findings demonstrate that SW-Rs are regulated by this signaling pathway in a dynamic manner. Not only so, we show that this signaling pathway is dynamically needed for spatial working memory. These data suggest a molecular signaling pathway, NRG1-ErbB4, that regulates an important network event of the hippocampus, SW-Rs, that underlies memory functioning.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Memória Espacial/fisiologia
7.
Curr Biol ; 31(15): 3330-3342.e7, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143959

RESUMO

Dopamine (DA) transmission is critical to motivation, movement, and emotion. Unlike glutamatergic and GABAergic synapses, the development of DA synapses is less understood. We show that bassoon (BSN) clusters along DA axons in the core of nucleus accumbens (NAcc) were increased in neonatal stages and reduced afterward, suggesting DA synapse elimination. Remarkably, DA neuron-specific ablating neuregulin 3 (NRG3), a protein whose levels correlate with BSN clusters, increased the clusters and impaired DA release and behaviors related to DA transmission. An unbiased screen of transmembrane proteins with the extracellular domain (ECD) of NRG3 identified Caspr3 (contactin associate-like protein 3) as a binding partner. Caspr3 was enriched in striatal medium spiny neurons (MSNs). NRG3 and Caspr3 interact in trans, which was blocked by Caspr3-ECD. Caspr3 null mice displayed phenotypes similar to those in DAT-Nrg3f/f mice in DA axonal BSN clusters and DA transmission. Finally, in vivo disruption of the NRG3-Caspr3 interaction increased BSN clusters. Together, these results demonstrate that DA synapse development is controlled by trans interaction between NRG3 in DA neurons and Caspr3 in MSNs, identifying a novel pair of cell adhesion molecules for brain circuit wiring.


Assuntos
Corpo Estriado , Dopamina , Neurônios Dopaminérgicos/citologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurregulinas/fisiologia , Animais , Corpo Estriado/citologia , Camundongos , Camundongos Knockout , Sinapses
8.
Neuron ; 105(3): 475-490.e6, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31780330

RESUMO

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with symptoms including social deficits, anxiety, and communication difficulties. However, ASD pathogenic mechanisms are poorly understood. Mutations of CUL3, which encodes Cullin 3 (CUL3), a component of an E3 ligase complex, are thought of as risk factors for ASD and schizophrenia (SCZ). CUL3 is abundant in the brain, yet little is known of its function. Here, we show that CUL3 is critical for neurodevelopment. CUL3-deficient mice exhibited social deficits and anxiety-like behaviors with enhanced glutamatergic transmission and neuronal excitability. Proteomic analysis revealed eIF4G1, a protein for Cap-dependent translation, as a potential target of CUL3. ASD-associated cellular and behavioral deficits could be rescued by pharmacological inhibition of the eIF4G1 function and chemogenetic inhibition of neuronal activity. Thus, CUL3 is critical to neural development, neurotransmission, and excitation-inhibition (E-I) balance. Our study provides novel insight into the pathophysiological mechanisms of ASD and SCZ.


Assuntos
Ansiedade/metabolismo , Proteínas Culina/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Biossíntese de Proteínas/fisiologia , Habilidades Sociais , Animais , Ansiedade/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Proteínas Culina/genética , Células HEK293 , Humanos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Neuron ; 98(2): 380-393.e4, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29628188

RESUMO

Top-down attention is crucial for meaningful behaviors and impaired in various mental disorders. However, its underpinning regulatory mechanisms are poorly understood. We demonstrate that the hippocampal-prefrontal synchrony associates with levels of top-down attention. Both attention and synchrony are reduced in mutant mice of ErbB4, a receptor of neuregulin-1. We used chemical genetic and optogenetic approaches to inactivate ErbB4 kinase and ErbB4+ interneurons, respectively, both of which reduce gamma-aminobutyric acid (GABA) activity. Such inhibitions in the hippocampus impair both hippocampal-prefrontal synchrony and top-down attention, whereas those in the prefrontal cortex alter attention, but not synchrony. These observations identify a role of ErbB4-dependent GABA activity in the hippocampus in synchronizing the hippocampal-prefrontal pathway and demonstrate that acute, dynamic ErbB4 signaling is required to command top-down attention. Because both neuregulin-1 and ErbB4 are susceptibility genes of schizophrenia and major depression, our study contributes to a better understanding of these disorders. VIDEO ABSTRACT.


Assuntos
Atenção/fisiologia , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Tempo de Reação/fisiologia , Receptor ErbB-4/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Receptor ErbB-4/genética , Roedores , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(10): 2508-2513, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463705

RESUMO

Neuregulin3 (NRG3) is a growth factor of the neuregulin (NRG) family and a risk gene of various severe mental illnesses including schizophrenia, bipolar disorders, and major depression. However, the physiological function of NRG3 remains poorly understood. Here we show that loss of Nrg3 in GFAP-Nrg3f/f mice increased glutamatergic transmission, but had no effect on GABAergic transmission. These phenotypes were observed in Nex-Nrg3f/f mice, where Nrg3 was specifically knocked out in pyramidal neurons, indicating that Nrg3 regulates glutamatergic transmission by a cell-autonomous mechanism. Consequently, in the absence of Nrg3 in pyramidal neurons, mutant mice displayed various behavioral deficits related to mental illnesses. We show that the Nrg3 mutation decreased paired-pulse facilitation, increased decay of NMDAR currents when treated with MK801, and increased minimal stimulation-elicited response, providing evidence that the Nrg3 mutation increases glutamate release probability. Notably, Nrg3 is a presynaptic protein that regulates the SNARE-complex assembly. Finally, increased Nrg3 levels, as observed in patients with severe mental illnesses, suppressed glutamatergic transmission. Together, these observations indicate that, unlike the prototype Nrg1, the effect of which is mediated by activating ErbB4 in interneurons, Nrg3 is critical in controlling glutamatergic transmission by regulating the SNARE complex at the presynaptic terminals, identifying a function of Nrg3 and revealing a pathophysiological mechanism for hypofunction of the glutamatergic pathway in Nrg3-related severe mental illnesses.


Assuntos
Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas SNARE/metabolismo , Animais , Comportamento Animal/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transtornos Mentais/genética , Camundongos , Camundongos Transgênicos , Neurregulinas , Células Piramidais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...